Advanced Methods of Non-Life Pricing in R (R6)

Discover how to use advanced techniques for non-life pricing such as regression models and calibrating machine learning models in R through Notebooks.

Free Preview

Preview

£300 once-off (3-month access)

Enroll here

Introduction

If you’re looking to learn how to utilise advanced applications to pricing in R, this course is ideal for you. An individual subscription gives you 3 months’ online access to:

  • Course materials
  • Downloadable Notebooks with code and explanations
  • Instructional videos that walk through case studies
  • Discussion forums to engage and collaborate with like-minded individuals
  • Option to ask tutors questions through forums and Q&A sessions
  • Hands-on practical examples linked to actuarial work
  • On demand access

As Well As

Our Industry and Actuartech Resource Libraries which feature curated additional content to assist you on your data science journey.

A IT engineer working on a project.
Someone working on an online course at their desk.

Pick from any of our introductory or advanced courses with bespoke insurance and actuarial specific case studies.

Our platform is easy to use and offers detailed guides, with course content and downloadable Notebooks offering code and explanations, enabling you to apply data science hands-on.

We provide case studies and projects relevant to actuarial work, and based on relevant datasets provided. You have the option to interact and network with your peers.

Overview

The course starts with an explanation of the methodology and implementation for generalised additive models (GAMs) in R. We use an introductory example of moving from statistical models to machine learning models, followed by modeling continuous variables using GAMs and penalised regression techniques (e.g. lasso, ridge, elastic net, etc). 

We then, in interactive e-learning sessions, discuss the difference between artificial intelligence (AI) and machine learning (ML) as well as classical approaches vs machine learning. We explain the objectives, families and general process/methodology of ML, and offer examples of ML in insurance. The first interactive e-learning session includes examples of ML in insurance. Thereafter, we focus on error measures, regression trees, bagging, and random forest. Lastly, we do a deep dive into gradient boosted models, neural networks, and support vector machines. Each interactive e-learning session ends with a short quiz for the student to check their understanding of the session before continuing.  

The course ends with the live lesson which deals with calibrating a machine learning model. There is a reference to three practical experiences, the example and two hands-on case studies. The example showcases the application of a regression tree on the claim frequency, and the case studies are hands-on experiences of predicting the number of claims with a Gradient Boosting Machine (GBM) and prediction of random forest on average claim amount. The Notebooks, along with their respective memos, are available for completion on the platform.

This course is presented mainly through a combination of videos with slides, interactive e-learning slides and Jupyter Notebooks. After each video there is a short quiz for the student to gauge their understanding of the section before continuing.

Get started

Advanced Methods of Non-Life Pricing in R

Sign up for a free preview of this advanced course in R

Free Preview

Preview

£300 once-off (3-month access)

Enroll Today

Course Structure

Chapter 1 introduces modelling continuous explanatory variables with generalised additive models and penalised regression techniques.

Chapter 2 introduces machine learning and discusses supervised machine learning techniques.

Chapter 2 offers practical examples of the models as a Jupyter Notebook.

Chapter 3 offers an example of the prediction of the number of claims with a regression tree and includes a hands-on case study on predicting the number of claims with a GBM and using random forest to predict average claim amount.

Chapter 4 discusses how to calibrate a ML model in practice through cross-validation and parameter tuning.

The Appendix contains further resources to assist the student in their data science journey.

A person showing different sections of an online course

Who's this course suitable for?

  • Individuals with experience in R and knowledge of basic machine learning techniques in R.
  • Individuals interested in learning how ML can assist with pricing and how it can offer advanced insights into data.
  • Individuals wanting to learn how to build advanced models in R.
  • Individuals working in pricing and reserving.

Why is this topic important?

  • Advanced models can offer improved accuracy over basic GLMs.
  • Modern machine learning techniques can capture the importance and interaction of rating factors, assisting with risk management and monitoring claim drivers.
  • Limitations of GLMs are addressed, preventing overfitting and maintaining interpretability.

The course was just what I needed to rocket launch my learning of Python up the learning curve.

The course was brilliant value for money. You and your colleagues know a lot about Python, and are very patient in explaining it to newcomers like me.

Thank you for an incredibly insightful but so, so practical (think often the missing ingredient) presentation of this topic, that we are all grabbling with. Your experience and expertise shone through and certainly a testament to the stellar work that you guys are doing in the industry.

I’m in the process of reviving my actuarial career. The data science course has given me lots of new ideas and things to try. You have inspired me. Thank you so much for putting it together. I think it’s amazing!

I liked the fact that the course was a mixture of coding itself, and wider issues such as governance / ethics / good practice.

Get started

Advanced Methods of Non-Life Pricing in R

Sign up for a free preview of this advanced course in R

Free Preview

Preview

£300 once-off (3-month access)

Enroll Today

Interested in Corporate Training?

We have tailored packages available to ensure that corporate teams have the option to attend structured live lessons by our tutors, and the option to request a practical assignment and bespoke feedback. Invoicing option available.